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ABSTRACT:  

his paper introduces a two-grid methodology aimed at creating a black-box iterative solver 

suitable for a diverse range of practical applications within continuum mechanics, including 

heat and mass transfer, fluid dynamics, elasticity, and electromagnetism. The primary design 

goals for this (non-)linear black-box solver include: (1) robustness, by minimizing the 

reliance on problem-specific components, (2) efficiency, by achieving algorithmic complexity 

close to optimal levels, and (3) parallelism, ensuring that a parallel robust algorithm 

outperforms the best sequential alternatives. The core concept revolves around utilizing an 

auxiliary structured grid to handle more computationally demanding tasks, where (non-)linear 

problems can be more easily solved and parallelized. This approach effectively merges the 

benefits of unstructured and structured grids: facilitating simpler generation for complex 

domain geometries and enabling the solution of (non-)linear (initial-)boundary value 

problems through the Robust Multigrid Technique. This article covers an in-depth description 

of the two-grid algorithm, along with assessments of its robustness, convergence, algorithmic 

complexity, and parallelism. The ongoing advancement of modern software for addressing 

real-life challenges underscores the significance of this research. The proposed two-grid 

algorithm can be integrated into black-box parallel software systems, leading to reduced 

execution times for solving (initial-)boundary value problems.  

 Keywords: mathematical modeling, parallel computing, high-performance computing, 

multigrid methods, black-box software, multiphysics simulation, practical applications 

INTRODUCTION  

Mathematical modeling of physical and chemical processes is a fundamental endeavor 

in science and engineering. However, the intricacies of mathematical models, numerical 

algorithms, parallel computing technologies, and supercomputer architectures often 

surpass the comprehension of many scientists and engineers. This challenge highlights the 

need for black-box software solutions. Across several industries, as well as in engineering 

and consulting firms globally, there is a reliance on commercially available general-

purpose computational fluid dynamics (CFD) codes for simulating fluid flow, heat and 

mass transfer, and combustion in aerospace applications, including tools like Fluent, Star-

CCM+, COMSOL’s CFD Module, and Altair’s AcuSolve. Additionally, numerous 

universities and research institutes utilize these commercial codes alongside custom-
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developed solutions. Open-source alternatives, such as OpenFOAM, have also emerged, 

providing accessible options.  

Key considerations in this domain include accurately representing complex 

geometries and generating appropriate computational grids. However, effectively 

deploying these codes and interpreting the results necessitates a solid understanding of the 

foundational concepts behind computational methods. A promising trend in numerical 

simulation and scientific computing is the development of a single code capable of 

addressing a multitude of previously solved problems. Typically, the mathematical 

modeling process involves the following stages:  

1. Formulating the mathematical model for the relevant physical and chemical processes 

in the form \(N(u) = f\); 

2. Approximating the space-time continuum through the generation of a computational 

grid \(G\); 

3. Approximating the differential problems (1) on grid \(G\) to derive a discrete analogue 

of the mathematical model \(N_h(u_h) = f_h\); 

4. Obtaining a numerical solution for the (non-)linear discrete equations \(u_h = N_h^{-

1} f_h\) on either sequential or parallel computers; 

5. Visualizing and analyzing the computational results. 

In this context, \(N(u) = f\) represents a system of (non-)linear partial differential 

equations (PDEs) and (initial-)boundary conditions, while \(N_h(u_h) = f_h\) denotes the 

resulting system of (non-)linear algebraic equations, serving as the discrete analogue of 

the mathematical model. The solution \(u_h = N_h^{-1} f_h\) represents the numerical 

result. Unfortunately, each stage of mathematical modeling presents complex challenges 

that remain inadequately addressed. The most time-consuming phase is the numerical 

solution of the (non-)linear discrete equations. 

The term "black-box solver" has evolved to describe algorithms that resolve a system 

of linear algebraic equations based solely on the matrix formulation \(Ax = b\)—requiring 

only the coefficient matrix \(A\), the right-hand side vector \(b\), and an initial guess 

\(x^{(0)}\) for the solution \(A^{-1}b\). This concept can also extend to solving linear 

problems or globally linearized nonlinear problems without requiring geometric input. 

Monolithic methods applied across the entire system have demonstrated robust 

convergence for saddle point problems and multiphysics simulations. A particularly 

elegant approach to constructing monolithic algorithms leverages finite volume methods 

with careful ordering of unknowns based on geometric data from the computational grid. 
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However, creating an efficient monolithic approach for navigating systems of strongly 

coupled nonlinear PDEs solely through local linearization presents considerable 

difficulties. 

We define software as a black-box if it necessitates minimal input from the user, 

requiring only a specification of the physical problem, including domain geometry, 

boundary and initial conditions, source terms, and the identification of the equations to be 

solved (such as heat conduction, Navier–Stokes, Maxwell equations, etc.). The user need 

not possess knowledge of numerical methods or the intricacies of high-performance 

parallel computing. The aim of robust algorithms is to select components that are 

problem-independent, thereby maximizing the solver's applicability across a broad range 

of issues. 

Despite having a multitude of mathematical models for various physical and chemical 

processes for multiphysics simulation, along with various methods for generating 

adaptive unstructured or (block-)structured grids, and numerous iterative methods for 

parallel segregated/coupled solutions, combining these elements into a unified black-box 

solver for a wide range of real-life challenges remains a significant task. Notably, 

execution time heavily relies on the computational algorithm employed for solving real-

world problems in parallel. 

The ongoing development of classical solvers often seeks to enhance either 

robustness, convergence rate, or the efficiency of parallel algorithms. We propose that 

developing a black-box solver should aim to simultaneously improve all three aspects—

robustness, convergence rate, and efficiency—despite these requirements traditionally 

being mutually exclusive. 

This paper delves into the mathematical foundations necessary for the development of 

such a black-box solver. We begin by defining the challenges associated with creating this 

type of solver, followed by a presentation of a two-grid algorithm integrating both 

original and auxiliary grids for addressing nonlinear (initial-)boundary value problems. 

The Robust Multigrid Technique (RMT) for resolving nonlinear (initial-)boundary value 

problems on the auxiliary grid is subsequently outlined. Our goal is to devise a black-box 

computational methodology capable of paralleling the solution of a diverse array of 

practical problems, ranging from the Poisson equation to systems of nonlinear strongly 

coupled partial differential equations—particularly in complex geometric domains. 

The article's structure is as follows: Section 1 highlights key concerns related to the 

advancement of black-box software for scientific and technical calculations. Section 2 
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delineates the general requirements for black-box solvers, encompassing robustness, 

complexity, and parallelism. Section 3 explains the two-grid algorithm with an auxiliary 

structured grid, aimed at simplifying the coupled solutions of nonlinear (initial-)boundary 

value problems. Section 4 details the application of Robust Multigrid Technique on the 

auxiliary grid. A discussion on multigrid methods is featured in Section 5. Finally, Section 

6 summarizes the advantages of the two-grid algorithm. 

1. GENERAL REQUIREMENTS ON BLACK-BOX SOLVER 

To establish a clear understanding of black-box solvers, it is essential to examine various 

computational aspects of real-life problems and highlight the most significant features we 

consider important:  

1. Grid Generation and Adaptive Refinement in Complex Domains:Creating unstructured 

automatic meshes is often simpler than generating (block-)structured grids for complicated 

domains. However, structured grids facilitate the construction of more efficient solvers. 

Adaptivity and parallelism are vital numerical principles that, while important, can conflict 

with each other. 

 

2. Multiphysics Simulation: This involves the numerical analysis of multiple simultaneous 

physical and chemical phenomena—such as heat transfer, fluid flow, deformation, 

electromagnetics, acoustics, and mass transport. The nonlinear partial differential equations 

(PDEs) that describe these phenomena can be solved in either a coupled or decoupled 

manner. The differences in computational workload between coupled and decoupled 

iterations cannot always be predetermined and are typically identified during the iterative 

solution process. 

 

3. Stationary vs. Non-Stationary Solutions: The initial-boundary value problems associated 

with time-dependent PDEs pose significant scientific and practical challenges. Reasons for 

this include: 

   - Certain physical processes, like turbulence, are inherently non-stationary and three-

dimensional. 

   - Initial-boundary value problems are particularly beneficial for solutions exhibiting 

unsteady behavior, which cannot be forecasted. Steady-state solutions may be approached 

using pseudo-time marching techniques. Semi-implicit or fully implicit discretizations allow 

for larger, adaptable time steps, making parallel processing viable across both space and time. 

   - Systems of strongly coupled nonlinear PDEs often arise in multiphysics simulations, 

where time steps can also function as under-relaxation factors to help control the convergence 

of nonlinear iterations. 

 

Given these considerations, a time-dependent formulation of PDEs is generally more suitable 

for black-box implementations. The computational algorithm must remain efficient for 

varying grid aspect ratios in time and space.  
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From our perspective, a true black-box algorithm should possess key properties such as 

robustness and optimal computational efficiency. Robustness is defined as the algorithm's 

resilience, characterized by the minimal number of problem-dependent components across 

algorithms within the same category. Optimal computational work refers to the capability to 

solve a variety of problems within truncation error using \( CN \) arithmetic operations, 

where \( N \) represents the number of unknowns. 

 

Developing black-box solvers for multidisciplinary applications, while simultaneously 

addressing the "robustness–efficiency–parallelism" challenge, presents a novel obstacle 

within scientific computing. Unfortunately, a perfect black-box solver is unattainable since 

these requirements can inherently conflict. Therefore, adjustments to the "robustness–

efficiency–parallelism" demands are necessary to move toward a close-to-black-box solver. 

 

Algorithmic Complexity (W) serves as a metric for comparing the efficiency of 

computational algorithms, typically measured by the number of arithmetic operations 

required to resolve a problem. We will begin our exploration with linear PDEs due to their 

relative simplicity. Let \( N \) represent a linear elliptic operator (e.g., a Laplace operator) 

defined over a \( d \)-dimensional unit cube \( \Omega \) (where \( d = 2, 3 \)). A uniform 

computational grid \( G \) is created by dividing each edge of the cube into \( n \) 

subintervals, leading to the discretization parameter \( n \) and mesh size \( h = 1/n \). 

 

Some approximation of the mathematical problem leads to a discrete analogue. Using an 

appropriate ordering of unknowns allows us to rewrite the linear discrete problem in a matrix 

representation: 

where A is a coefficient matrix, u is a vector of 

unknowns, and b is a right-hand side vector. General linear iterations for solving the system 

(4) can be represented in the form 

 

where the splitting matrix W defines a basic linear iterative algorithm 

 

where I is the unity matrix, and s is the iteration counter. In the following, we will assume 

that the system (4) has an unique solution u = A −1b and iterations (5) converge to this 

solution: u (s) → u = A −1b for s → +∞. The basic linear algorithm (5) for iterative solving 

(4) has three problem-dependent components: the ordering of unknowns, the splitting matrix 

W and a stopping criterion for these iterations. For estimating the algorithmic complexity, we 

assume that a block ordering of the unknowns is used, i.e., the number of unknowns becomes 
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where nb is the number of blocks, Nb is the number of unknowns forming each block, N = n 

d , d = 2, 3 is the number of unknowns, and n is the discretization parameter (h = 1/n). The 

computational cost of each Vanka-type iteration (block Gauss–Seidel method used for the 

coupled numerical solution of systems of PDEs including the saddle-point problems [16,17]) 

is 

 

arithmetic operations (ao), where C is some constant. The number of iterations (5) can be 

estimated as 

 

where the parameter κ depends on the condition number of the coefficient matrix A and the 

block size Nb , d = 2, 3. Then the algorithmic complexity of the block iterative method 

becomes 

 

Use of the uniform grid in the above-mentioned linear analysis makes it possible to obtain the 

expression (6) for estimating the computational work. If nb = 1, then the block iteration 

coincides with the Gaussian elimination 

 

i.e., the complexity W is κ-independent and 

 

The Gaussian elimination with partial/complete pivoting is implemented without the 

problem-dependent components, but large complexity (W = O(N3 ) ao) allows this direct 

method to be used for solving small systems of linear algebraic Equations (SLAEs). The 

point ordering of an unknown corresponds to nb = N. In this case, the algorithmic complexity 

becomes 

 

It is expected that the point iterative method (5) will be faster than the Gaussian elimination 

for sufficiently large N, i.e., 0 ≤ κ < 2d. The parameter κ depends on the coefficient matrix A: 

κ → 0 for well-conditioned problems and the point iterative method has almost optimal 

algorithmic complexity 

 

As a rule, it is not useful to accelerate a highly efficient solver. The extra effort does not pay 

off.  

Thus, the simplest problem of constructing a robust iterative algorithm for numerical solving 

linear (initial-)boundary value problems on a uniform grid can be formulated as follows:  
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(1) If A in (4) is a well-conditioned coefficient matrix (κ → 0), then the robust iterative 

algorithm must coincide with the basic linear algorithm (5);  

(2) If A in (4) is an ill-conditioned coefficient matrix (0 < κ < 2d), then it is necessary to add 

the lowest number of problem-dependent components to the basic linear algorithm (5) to: 

(a) Reduce the algorithmic complexity (6) down to a close-to-optimal value 

 

in sequential implementation;  

(b) Ensure that a parallel algorithm should be faster than the fastest sequential solver. The 

above considerations imply that it is necessary to coupled consider the two requirements of 

close-to-optimal complexity (7) and parallelism. For the given purpose, the execution time of 

a parallel close-to-black-box algorithm should be compared with the execution time of the 

fastest (optimal) sequential algorithm. Let 

 

be the algorithmic complexity of optimal solver and 

 

be the algorithmic complexity of fully parallel close-to-black-box solver (7). Here, p is the 

number of independent computing units in parallel implementation and Co and Cp are some 

constant. Assuming that the execution time is proportional to the complexity in the algorithm 

considered (T ∼ W), we have 

 

where S is the speed-up of the parallel solver over the optimal one, To is the execution time 

of the sequential optimal algorithm, and Tp is the execution time of the parallel close-

toblack-box algorithm, N and p are the number of unknowns and independent computing 

units, respectively. If Co ≈ Cp then 

 

From the above results and considerations, one can conclude that parallel implementation of 

the close-to-black-box algorithm (7) will not lead to impressive reduction in the execution 

time as compared with the optimal sequential one (8) with N large. Constructing the iterative 

algorithm for numerically solving nonlinear (initial-boundary value problems remains the 

same:  

(1) If the sequential Newton-type iterations converge slowly, then convergence should be 

accelerated up to close-to-optimal value (7) using the least number of extra 

problemdependent components; 

 (2) The parallel nonlinear algorithm should be faster than the fastest sequential one.  

In general, development of the robust algorithm is more difficult than that of solving linear 

problems on a uniform grid. We summarize these considerations as follows:  
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(1) As a rule, systems of nonlinear strongly coupled PDEs in complex domains (multiphysics 

simulation) are needed to solve in a (de)coupled manner for industrial applications, so 

theoretical analysis of algorithmic complexity such as (6) becomes more difficult;  

(2) Simplicity of Gauss–Seidel iterations makes this algorithm attractive for smoothing in 

low-memory sequential or parallel multigrid. For real-life applications, it is far from trivial to 

choose optimal robust algorithm components uniformly for a large class of problems. In 

many cases, the Krylov subspace methods may have advantages. Therefore, each iterative 

algorithm for the numerical solution of nonlinear (initial-)boundary value problems has at 

least three problem-dependent components: the ordering of unknowns, (de)coupled iterations 

for a locally/globally linearised discrete problems and a stopping criterion for this iterative 

process. As a result, a black-box solver requires black-box optimization (i.e., the optimal 

choice of the problem-dependent components of the robust algorithm for the given problem 

without user control).  

The question remains: Is it possible to construct a close-to-optimal black-box solver (the least 

number of problem-dependent components, close-to-optimal complexity (7), the parallel 

algorithm should be faster than the fastest sequential one) instead of the true black-box one 

(absence of the problem-dependent components, optimal complexity (8), and full 

parallelism)? Yes! First, a general computational approach for combining the advantages of 

unstructured and structured grids (two-grid algorithm) will be presented. Second, a robust 

method for solving the discrete initial-boundary value problems on the auxiliary structured 

grid will be analysed. 

2. TWO-GRID ALGORITHM  

Close-to-black-box solver can be constructed by combining the advantages of unstructured 

and structured grids: simplicity of automatic generation in complex domain geometry and 

opportunity to solve nonlinear (initial-)boundary value problems by very efficient geometric 

multigrid methods in parallel (de-)coupled manner. The Auxiliary Space Method is a (non-

)nested two-level preconditioning technique based on a simple relaxation scheme (smoother) 

and an auxiliary space (here a structured grid is the auxiliary space). The basic idea of the 

Auxiliary Space Method is to use an auxiliary (non-)linear problem in the auxiliary space, 

where it is simpler to solve [18,19]. The solution of auxiliary problem (auxiliary grid 

correction) is then transferred back to the original space. The mismatch between auxiliary 

space and the original space is corrected by a few smoothing iterations. For reason of 

simplicity, we consider a linear boundary value problem 

 

on domain Ω ∈ Rd , together with a set of appropriate boundary conditions 

 

at the domain boundary ∂Ω. Here, L is a linear elliptic operators, f is a known functions and u 

is the desired solution. Let uˆ be an approximation to the solution u and c = u − uˆ is a 

correction, i.e., difference between the solution and the approximation to it. The 

representation of the solution 
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is called Σ-modification of the solution [15,20]. Substitution of (10) into (9) leads to 

Σmodified form of this problem 

 

Σ-modification can be used for solving some nonlinear problems (for example, the Navier– 

Stokes equations), but Π-modification u = uˆ · c can be preferable for another nonlinear 

problems. The general approach for solving the nonlinear problems solution is Full 

Approximation Storage scheme [3].  

Let an original (un-)structured grid Go and an auxiliary structured grids Ga be generated in 

the domain Ω. Figures 1 and 2 represents example of such computational grids. 

Approximation of (11) on these grids Go and Ga leads to the discrete problems written in the 

matrix form (with the eliminated boundary conditions): 

 

It should be emphasized that the problem (11) is discretized on these grids Go and Ga 

independently. So, the systems (12) and (13) are independent from each other. It simplifies 

the coupled iterative solution of systems of PDEs. For interface between (12) and (13), a 

restriction operator Ro→a transferring the residual f h o − Ao ˆu h o from the grid Go onto 

the grid Ga 

 

and a prolongation operator Pa→o transferring the correction c h a from the grid Ga onto the 

grid G 

 

should be defined. Figure 3 demonstrates an example of the transfer operators Ro→a and 

Pa→o . Using (14) and (15), the correction c h o can be computed as 

 

 

Figure 1. Example of the original (un-)structured grid Go 
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Figure 2. Example of the auxiliary structured grids Ga 

Figure 4 represent the linear two-grid algorithm 

1. Transfer of the residual f h o − Ao ˆu (q) o to the auxiliary grid Ga , where q is a 

counter of the intergrid iteration 

2. 2. Solution of the auxiliary system by some numerical method 

 

3. Prolongation of the correction ca to the original grid G 

 

where Pa→o is a prolongation operator transferring the correction to Go ;  

4. Computation of the starting guess for the smoothing iterations on G 

 

5. Smoothing iterations on the original grid G 

 

where s is the smoothing iteration counter;  

6. Updating the approximation to the solution 

 

where q is the intergrid iteration counter;  

7. check convergence, repeat if necessary 
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Figure 4. Linear two-grid algorithm 

The linear two-grid algorithm can be rewritten in the matrix form 

 

where the iteration matrix of the linear two-grid algorithm is 

 

and So = I − W−1 o Ao is a smoothing iteration matrix and ν is the smoothing iterations 

counter (kSok < 1).  

The convergence properties of the linear two-grid algorithm can be easily analysed by 

considering factor ρq of the averaged reduction in the residual r (q) o = f h o − Ao ˆu (q) 

 

which shows the averaged reduction in the residual over q integrid iterations [21]. The 

classical multigrid theory is based on the approximation and smoothing property as 

introduced by W. Hackbusch [22]:  

1. Smoothing property: a monotonically decreasing function η(ν) : R+ → R+ exist such 

that η(ν) → 0 for ν → ∞ an 

 

 
2. Approximation property: there exists a constant CA > 0 such that 

 

The smoothing property states, in principle, that the smoother reduces the highfrequency 

components of the error (without amplifying the low-frequency components). The 

approximation property requires the coarse grid correction to be reasonable [22]. The 

basis of this theory is a splitting (factorization) of the two-grid iteration matrix M (17). 

Theorem 1.  

Assuming that the smoothing property (19) and approximation property (20) hold, then 

the N-independent convergence of the intergrid iterations (16) follows immediately for ν 

that is large enough. 

Proof of Theorem 1. The intergrid iterations (16) can be rewritten as 
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This leads to the following estimation 

 

The splitting of the two-grid iteration matrix M (17), the smoothing property (19), and 

approximation property (20) lead to the estimation 

 

Since η(ν) is the monotonically decreasing function, it should be noted that 

 

r a sufficiently large v. 

This theorem predicts that the number of intergrid iterations of the two-grid algorithm 

does not depend on the number of unknowns N, i.e., ρq 6= ρq (N) (18). The main features 

of the two-grid algorithm can be summarized as follows:  

(1) The number of extra problem-dependent components as compared with the basic 

algorithm (5) are:  

(a) A non-nested case: let Go and Ga be the unstructured and structured grid, respectively. 

The two-grid algorithm has two extra problem-dependent components: transfer operators 

Ro→a and Pa→o (Figure 3);  

(b) A nested case: let Go and Ga be the block-structured grids [9]. In this case, we 

suppose Ga = Go ⇒ Ro→a = Pa→o = I in absence of smoothing on the original grid (So 

= I) and the two-grid algorithm has extra problem-dependent components (interblock 

interpolation); 

 (c) A nested case: let Go and Ga be the structured grids. In this case, we suppose Ga = 

Go ⇒ Ro→a = Pa→o = I in absence of smoothing on the original grid (So = I) and the 

two-grid algorithm has no extra problem-dependent components.  

(2) The nonlinear two-grid algorithm based on Full Approximation Scheme approach is 

given in [15].  

(3) The nonlinear two-grid algorithm offers a general possibility to employ low order 

schemes and obtain high order accuracy (the high order defect correction iteration [3]). 

Remember that mathematical modelling in continuum mechanics is a chain of 

approximations: (a) The difference schemes approximate the governing differential 

Equation (1). (A difference scheme is a finite system of algebraic equations replacing 

some differential problem);  

(b) The differential Equation (1) approximate the fundamental conservation laws of 

continuum mechanics. (In fact, the hypothesis of continuity prohibits the limit leading to 

the differential equations);  

(c) A continuous medium approximates a real one. Since any chemical reaction is the 

result of intermolecular interactions, modelling chemical processes in continuum 

mechanics is only possible by using empirical hypotheses and experimental data to 

approximate the quantum nature of these intermolecular interactions. 
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As a rule, the mathematical description errors of physical and chemical processes in real-

life problems has a physical nature (inaccurate the initial and\or the boundary conditions, 

equation state errors, approximate description of the turbulent transport and the chemical 

reactions, etc.) and they exceed the discretization errors of the governing (integro-

)differential Equations [23]. In many cases, the second-order accurate finite volume 

discretization does not damage the discrete solution accuracy of the mathematical model 

equations required for practical applications. However, advanced software can use the 

high-order discretization without significant changes in the computational algorithm. For 

reasons of robustness, the finite volume method of the second order discretization will be 

used on the auxiliary grid Ga , but high order discretization approaches can be used on the 

original grid Go . 

(4) The basic ingredients of the two-grid algorithm are computation of correction ca on 

the auxiliary grid Ga and smoothing iterations on the original grid Ga . The most 

timeconsuming component of the solver is numerical inversion of the coefficient matrix 

Aa , i.e., the matrix A −1 a in (17).  

(5) The differential problem is approximated on the grids Go and Ga separately in order 

to simplify coupled iterative solution of systems of PDEs on the auxiliary structured grid 

Ga (for example, the Vanka-type iterations or the volume-coupled approach used in 

monolithic algebraic multigrid methods [5]). 

The two-grid algorithm puts more computational work on the auxiliary (structured) grid 

Ga , where the (non-)linear problems are simpler to solve and parallelize. The final effort 

is the construction of an efficient iterative algorithm for solving the (non-)linear (initial-

)boundary value problems on the auxiliary grid Ga . 

3. Robust Multigrid Technique  

An epochal event in world computational mathematics was publication of R.P. 

Fedorenko’s paper (Keldysh Institute of Applied Mathematics of Russian Academy of 

Sciences, Moscow, USSR/Russia) in 1961 [24], where the author formulated a new 

iterative method for solving discrete boundary value problems (BVPs) on structured grids 

(https://team.kiam.ru/botchev/fedorenko/, accessed on 1 August 2023). Thoughtful 

conclusions on the basis of elementary analysis were far ahead of their time, and after 

many years this paper was called the “first true multigrid publication” in the scientific 

literature. The first theoretical results were reported in the pioneering papers of N.S. 

Bakhvalov and G.P. Astrakhantsev. At the end of the 1970s and at the beginning of the 

1980s research on the multigrid methods increased. Very interesting multigrid approaches 

were proposed and developed in the Theoretical Division of the Los Alamos National 

Laboratory, USA. In papers [25,26], P.O. Frederickson and O.A. McBryan studied the 

efficiency of the Parallel Superconvergent Multigrid Method (PSMG). The basic idea 

behind the PSMG is the observation that for each fine grid there are two natural coarse 

grids—the even and odd points of the fine grid (Figure 5). The authors tried to develop a 

optimized multigrid algorithm by combining these coarse grid solutions for more accurate 

correction. 
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Although P.O. Frederickson and O.A. McBryan restrict themselves to a theoretical 

analysis of the PSMG, they demonstrate that besides numerical efficiency, the algorithm 

is also highly parallel. The PSMG and related ideas essentially refer to massively parallel 

computing. However, combinations or the extrapolation of the coarse grid corrections is a 

very efficient approach only for the simplest BVPs. Also in 1990, a similar multiple 

coarse grid correction strategy had been proposed for the development of a robust 

multigrid method for black-box software in Baranov Central Institute of Aviation Motors, 

Moscow, USSR/Russia. A developed solver is called Robust Multigrid Technique (RMT). 

The RMT uses a multiple coarsening strategy coupled with the finite volume 

discretization in order to obtain the problem-independent transfer operators and coarse 

grid operator (i.e., the matrix Aa in (13)), high parallel efficiency, and to make the 

smoother’s task the least demanding. The history of RMT is given in [20], and for the 

theoretical description of RMT and corresponding parallel analysis, we refer interested 

readers to [6,15,20,27]. 

The uniform finest grid G 0 1 consists of two sets of points G v (0;1) and G f (0;1): 

 

where the discretization parameter n 0 1 defines the finest grid G 0 1 . Figure 6 represents 

the finest uniform grid G 0 1 = G v (0;1) ∪ G f (0;1) generated with n 0 1 = 8 or mesh 

size h = 1/8 in the unit segment: x v 1 = 0, x v 9 = 1. 

 

Each d-dimensional computational grid used in RMT can be represented as product of d 

one-dimensional grids, so the one-dimensional grid G 0 1 = G v (0;1) ∪ G f (0;1) will be 

considered in detail. Figure 7 represents triple coarsening of RMT. This triple coarsening 

is independent of the assignment of grid functions to points x v i (x v i are the vertices, x f 

i are the finite volume faces) or to points x f i (x f i are the vertices, x v i are the finite 

volume faces). This triple coarsening, which does not depend on the configuration of 

finite volumes, gives a straightforward generalization to multidimensional (un-)staggered 

discretization of the (initial-)boundary value problems. Later, the triple coarsening was 

proposed in the Theoretical Division of the Los Alamos National Laboratory [28].  

PSMG and RMT are the single-grid algorithms based on the essential multigrid principle 

of iterations with a basic iterative method on the fine grid [21], but representation of these 

single-grid algorithms as the multigrid solvers allows analyse their convergence and 

complexity by elementary methods. The essential multigrid principle is to approximate 

the smooth (long wavelength) part of the error on coarser grids. The non-smooth or rough 

part is reduced with a small number (independent of mesh size) h. 
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Figure 7 illustrates the main properties of the coarse grids of RMT: Property 1: all coarse 

grids G 1 1 , G 1 2 and G 1 3 have no common grid points: 

 

It result in the massive parallelization of computations. Property 2: the fine grid G 0 1 is 

represented as a union of the coarse grids G 1 1 , G 1 2 and G 1 3 : 

 

It result in the problem-independent prolongation operator P. Property 3: all grids are 

geometrically similar, but the mesh size of the coarse grids G 1 1 , G 1 2 and G 1 3 is 

three times larger than the mesh size of the finest grid G 0 1 . It result in the unified finite 

volume discretization of the modified (initial-)boundary value problems on the multigrid 

structures, i.e., to the problem-independent construction of the coarse grid operator Aa in 

(17). Property 4: independent of the grid functions assignment, each finite volume on the 

coarse grids G 1 1 , G 1 2 and G 1 3 is a union of three finite volumes on the fine grid G 0 

1 . It result in the problem-independent restriction operator R based on the additive 

interval property to evaluate integrals in the finite volume discretization.  

The finest grid G 0 1 forms zero grid level, but the coarse grids G 1 1 , G 1 2 and G 1 3 

form the first grid level. The following coarsening is carried out recursively: each 

computational grid G l i , i = 1, . . . , 3l of level l is considered to be the finest grid for 

three coarse grids of level l + 1. Nine coarser grids obtained from three coarse grids of the 

first level form a second level as shown in Figure 8. The coarsening stops when the 

coarse grids will have a few points x v and x f , and further coarsening cannot be 

performed. The coarsest level will be denoted by L + 3 . The total number of levels 

(coarse levels L + 3 and the finest grid (zero level)) is L + 3 + 1. The grid hierarchy G l m, 

m = 1, . . . , 3l , l = 0, . . . , L + 3 will be called a multigrid structure (MS) generated by 

the grid G 0 1  

 

Here the coarse grids are used the only for obviousness of the technique description, since 

RMT is a single-grid algorithm, the index mapping gives the multigrid illusion 

[6,15,20,27]. 
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Figure 9 represents the finest grid G 0 1 (n 0 1 = 30, h = 1/n 0 1 = 1/30) and the coarse 

grids of the first and second levels. The number of coarse levels L + 3 + 1 can be 

computed before the generation of a multigrid structure. Assume that many of the coarsest 

grids of level L + 3 have three points x v or x f . Then the number of points on the finest 

grid G 0 1 is n 0 1 + 1 ≈ 3 L + 3 +1 or 

 

where the square brackets indicate an integer part. The procedure of the fast 

approximation of integrals on the multigrid structures uses the ghost points of each grid 

[20,27].  

The multigrid schedule of RMT is the V-cycle with no pre-smoothing (the so-called 

sawtooth cycle [21]). The sawtooth cycle is a special case of the V-cycle, in which 

smoothing before the coarse grid correction (pre-smoothing) is deleted. The 

computational cost of each multigrid iteration of RMT can be estimated as 

 

where W0 = CN ao is cost of the finest grid smoothing, N is the number of unknowns, C 

is some constant, and L + 3 + 1 is the number of levels. Since 

 

(21) and all grids of the some level have the same number of points, the algorithmic 

complexity of RMT can be estimated as 

 

i.e., RMT has the required close-to-optimal algorithmic complexity (7). Theoretical 

analysis predicts that the single-grid RMT has the most attractive property of classic 

multigrid methods, namely h-independent convergence in general situations [6,15,20,27]. 
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We summarize some well-known facts about sequential RMT here:  

(1) RMT is a single-grid algorithm having close-to-optimal algorithmic complexity and h-

independent convergence;  

(2) RMT uses a multiple coarsening strategy coupled with the finite volume discretization 

in order to obtain the problem-independent transfer operators and coarse grid operator, 

high parallel efficiency, and to make the smoother’s task the least demanding. The history 

of RMT is given in [6], for the theoretical description of RMT and corresponding 

examples and parallel analysis, we refer to [6,15,20,27]; 

(3) RMT has extra problem-dependent component (the number of smoothing iterations on 

the coarse levels); 

 (4) All problem-dependent components of RMT can be optimized on the multigrid 

structure in the black-box manner. The basic idea of black-box optimization is the 

experimental study of the iteration convergence rate on a multigrid structure starting from 

the same initial guess. For example, a discrete problem can be solved using different 

problem-dependent components on several grids of the same level starting from the same 

initial guess. Analysis of reduction in the residual norm during the smoothing iterations 

makes it possible to choose close-to-optimal problem-dependent components of the 

algorithm. Figure 9 illustrates that the similarity of all grids of the same level leads to 

almost the same problem-dependent components of the algorithm at this level. It should 

be emphasized that this black-box optimization does not require any theoretical input or a 

priori information on problem to be solved. The extra effort for this black-box 

optimization is negligible compared to the effort for smoothing 

Finally, analysis of the parallel RMT completes analysis of the two-grid algorithm. 

Assuming that the finest grid is deleted, we can solve the discrete problems on 3 d , d = 2, 

3 independent coarse grids of the first level. This geometric parallelism of RMT is based 

on non-overlapping the finest grid partition for distribution of 3 d , d = 2, 3 independent 

tasks over p = 3 κ , κ = 1, 2, . . . , d computing units. In the following, the coarse grids, 

which are considered the finest grids in the solution process, will be called dynamic finest 

grids. The difference between this starting guess and the finest grid numerical solution 

does not exceed ` significant digits for the second order finite volume discretization, 

where ` is the serial number of the dynamic level.  
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To illustrate the parallel RMT, we consider the following example: 

 

in the unit cube Ω = (0, 1) 3 . If the exact solution is given by 

 

then substitution of (23) into (22) gives the right-hand side function 

 

and the Dirichlet boundary conditions. Standard seven-point finite volume discretization 

of (22) on the uniform grid G 0 1 is abbreviated as 

 

where ∆ h , u h , and f h are the discrete analogues of the Laplace operator, the solution u, 

and the right-hand side function f , respectively.  

This boundary value problem is solved by RMT with (hx = hy = hz = 1/100) using the 

stopping criterion 

 

The error of the numerical solution is defined by comparison of the exact and 

approximated solutions 

 

where ua and u h are the exact (23) and the numerical solutions, respectively. Figure 10 

represents the error of the numerical solutions kek∞ obtained on the multigrid structures 

MS(G 0 1 ) and MS(G 1 k ), k = 1, . . . , 3d starting with the iterant zero on 101 × 101 × 

101 uniform finest grid G 0 1 (n 0 1 = 100, h = 1/100). Taking into account the stop-ping 

criterion, the iterative solution of the model BVP on the finest grid G 0 1 is a reduction in 

the error of the zero starting guess (ke (0)k∞ ≈ e 3 ≈ 20) down to kek∞ ≈ 10−6 . Figure 10 

illustrates the accuracy of the starting guess to the finest grid solution assembled from the 

solutions obtained in parallel on the coarse grids of the first level (dynamic finest grids). 

This geometric parallelism does not require parallelization of the iterative/direct solvers. 
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Figure 10. Error of the numerical solutions obtained on the multigrid structures MS(G 0 1 

) and MS(G 1 k ), k = 1, . . . , 27. 

The algebraic parallelism of RMT is based on the multicolour orderings of unknowns (or 

block of unknowns) to parallelize the smoothing iterations on the finer levels where the 

number of grids is less than the number of computing units. The small-scale granular 

algebraic parallelism is grid-independent. The solution of the modified boundary value 

problem starts on the auxiliary grid. 3 d multigrid structures generated by the dynamic 

grids of the first level makes it possible to obtain accurate approximation to the solution 

in parallel by handling 3 d independent discrete problems. In addition to black-box 

optimization of the problem-dependent components, the dynamic grid refinements are 

carried out during the solution process on the multigrid structures generated by the 

dynamic grids, controlled by some appropriate adaptation criteria. Figure 11 demonstrates 

an example of the adaptive grid refinement. Stopping of iterative computation of the 

auxiliary grid correction on the finest grid means that the sufficiently accurate 

approximation to the solution on the original grid obtained and subdomains for the grid 

refinement are determined. The next step is generation of an original (un)structured grid 

taking into account the subdomains for the auxiliary grid refinement. The auxiliary grid 

correction is prolonged to the original grid and it is corrected by a few smoothing 

iterations. The iterative process is continued with restriction of residual to the auxiliary 

grid if the required accuracy is not yet achieved. Otherwise, the two-grid algorithm stops. 

Subsequent intergrid iterations are performed without dynamic grids, the black-box 

optimization and the auxiliary grid refinement. The initial-boundary value problems are 

solved in the same parallel manner: parallel in space as that for the boundary value 

problems and parallel in time (waveform relaxation) [15,29,30].  

Theoretically, the execution time of the parallel RMT implemented over nine computing 

units is approximately equal to the execution time of the sequential V-cycle [15]. 
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4. Discussion  

In our perspective, the design of a black-box algorithm for tackling real-life problems 

should adhere to several key principles: 

1. Dominance of Physical Errors: In many instances, second-order accurate finite volume 

discretizations do not significantly compromise the accuracy of discrete solutions for real-

world scenarios. Advanced software has the potential to implement high-order 

discretizations without necessitating substantial changes to the underlying algorithm. 

 

2. Formalization of Computations: The black-box algorithm is intended to address 

nonlinear initial-boundary value problems in a unified manner, building upon established 

methods for known issues rather than innovating new methods for unprecedented 

problems. This emphasizes the importance of consolidating existing solutions. 

 

3.Robustness, Efficiency, and Parallelism Requirements: The interplay between 

robustness, efficiency, and parallelism forms the core of a viable black-box algorithm. 

Attempts to prioritize one of these requirements at the expense of the others are generally 

unproductive. 

 

4.(De)coupled Solutions for Complex Problems:The most challenging cases for a black-

box algorithm involve strongly coupled systems of nonlinear partial (integro-)differential 

equations, such as the steady Navier–Stokes equations. A suitable solver must be capable 

of addressing these systems not only in a segregated manner but also in a coupled manner 

across both structured and unstructured grids. 

While it is evident that a true black-box solver—characterized by entirely problem-

independent components, optimal convergence rates, and complete parallelism—remains 

unattainable, the aforementioned two-grid algorithm serves as a strong approximation of 

the desired solver for black-box applications. This method minimizes the number of 
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problem-dependent components while achieving close-to-optimal convergence rates and 

maintaining high unified parallelism through the Robust Multigrid Technique (RMT) for 

initial-boundary value problems. 

From a scientific standpoint, pursuing the development of additional computational 

techniques capable of solving a wide range of nonlinear (initial-)boundary value problems 

in a decoupled or coupled manner provides a compelling area for future exploration, 

particularly if these new methods can parallel the robustness, efficiency, and parallelism 

demonstrated by the two-grid algorithm. 

CONCLUSIONS  

In summary, the two-grid algorithm presents several advantages that align with the 

established conditions for effective black-box solvers: 

1.Robustness: The algorithm features a minimal number of problem-dependent 

components, making it robust. 

2.Efficiency:It achieves close-to-optimal algorithmic complexity, ensuring efficient 

performance in various computational scenarios. 

3. Parallelism: The parallel implementation of the algorithm is designed to outperform the 

fastest sequential solvers, enhancing computational speed. 

When comparing the two-grid algorithm to the basic algorithm, the additional problem-

dependent components are as follows: 

- Non-Nested Case: For unstructured grid \( G_o \) and structured grid \( G_a \), the two-

grid algorithm incorporates three extra components: the transfer operators (\( R_{o \to a} 

\) and \( P_{a \to o} \)) and the number of smoothing iterations on the auxiliary grid. 

- Nested Case with Block-Structured Grids: Assuming \( G_a = G_o \) and \( R_{o \to a} 

= P_{a \to o} = I \) (with no smoothing on the original grid, \( S_o = I \)), the algorithm 

has two additional components: interblock interpolation and the number of smoothing 

iterations on the auxiliary grid. 

- Nested Case with Structured Grids: Similarly, when both grids are structured (\( G_a = 

G_o \) and \( R_{o \to a} = P_{a \to o} = I \)), the algorithm again includes extra 

components related to the number of smoothing iterations on the auxiliary grid. 

Furthermore, the two-grid algorithm allows for elegant large-scale granular geometric 

parallelization of the Robust Multigrid Technique (RMT) by distributing the \( 3d \) 

independent discrete tasks across \( 3d \) computing units. This type of parallelization is 

smooth and independent of the grid. For small-scale granular algebraic parallelism, 

implementation occurs at finer levels, which remains grid-independent. 
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Theoretical analysis suggests that parallel RMT executed over nine computing units 

achieves performance roughly equivalent to that of a sequential V-cycle in terms of 

execution time. Initial-boundary value problems can be addressed in a similar parallel 

fashion to boundary value problems, incorporating parallelism in time as well. 

Numerical experiments illustrating the robustness and efficiency of the RMT are 

documented in the literature, while both sequential and parallel software implementations 

are presented in relevant sources. 
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